The Celestial Sphere

Humans perceive in Euclidean space -> straight lines and planes. But, when distances are not visible (i.e. very large) than the apparent shape that the mind draws is a sphere -> thus, we use a spherical coordinate system for mapping the sky with the additional advantage that we can project Earth reference points (i.e. North Pole, South Pole, equator) onto the sky. Note: the sky is not really a sphere!

From the Earth’s surface we envision a hemisphere and mark the compass points on the horizon. The circle that passes through the south point, north point and the point directly over head (zenith) is called the meridian.

This system allows one to indicate any position in the sky by two reference points, the time from the meridian and the angle from the horizon. Of course, since the Earth rotates, your coordinates will change after a few minutes.

The horizontal coordinate system (commonly referred to as the alt-az system) is the simplest coordinate system as it is based on the observer’s horizon. The celestial hemisphere viewed by an observer on the Earth is shown in the figure below. The great circle through the zenith Z and the north celestial pole P cuts the horizon NESYW at the north point (N) and the south point (S). The great circle WZE at right angles to the great circle NPZS cuts the horizon at the west point (W) and the east point (E). The arcs ZN, ZW, ZY, etc, are known as verticals.

The two numbers which specify the position of a star, X, in this system are the azimuth, A, and the altitude, a. The altitude of X is the angle measured along the vertical circle through X from the horizon at Y to X. It is measured in degrees. An often-used alternative to altitude is the zenith distance, z, of X, indicated by ZX. Clearly, z = 90 – a. Azimuth may be defined in a number of ways. For the purposes of this course, azimuth will be defined as the angle between the vertical through the north point and the vertical through the star at X, measured eastwards from the north point along the horizon from 0 to 360°. This definition applies to observers in both the northern and the southern hemispheres.

It is often useful to know how high a star is above the horizon and in what direction it can be found – this is the main advantage of the alt-az system. The main disadvantage of the alt-az system is that it is a local coordinate system – i.e. two observers at different points on the Earth’s surface will measure different altitudes and azimuths for the same star at the same time. In addition, an observer will find that the star’s alt-az coordinates changes with time as the celestial sphere appears to rotate.

Celestial Sphere:

To determine the positions of stars and planets on the sky in an absolute sense, we project the Earth’s spherical surface onto the sky, called the celestial sphere.

The celestial sphere has a north and south celestial pole as well as a celestial equator which are projected reference points to the same positions on the Earth surface. Right Ascension and Declination serve as an absolute coordinate system fixed on the sky, rather than a relative system like the zenith/horizon system. Right Ascension is the equivalent of longitude, only measured in hours, minutes and seconds (since the Earth rotates in the same units). Declination is the equivalent of latitude measured in degrees from the celestial equator (0 to 90). Any point of the celestial (i.e. the position of a star or planet) can be referenced with a unique Right Ascension and Declination.

The celestial sphere has a north and south celestial pole as well as a celestial equator which are projected from reference points from the Earth surface. Since the Earth turns on its axis once every 24 hours, the stars trace arcs through the sky parallel to the celestial equator. The appearance of this motion will vary depending on where you are located on the Earth’s surface.

Note that the daily rotation of the Earth causes each star and planet to make a daily circular path around the north celestial pole referred to as the diurnal motion.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s